Конечномерный линейный анализ в задачах

Нет в наличии

О товаре

Букинистическое издание. Книга предназначается для активного изучения расширенного курса линейной алгебры и основ функционального анализа. Многие теории и построения, представленные в книге, являются конечномерными моделями соответствующих оригинальных теорий и построений из функционального анализа. При этом, сохраняя свое идейное содержание, они становятся существенно более доступными. В целом книгу можно рассматривать как изложение линейной алгебры с точки зрения функционального анализа. Но вместе с тем в ней встречаются также некоторые существенно конечномерные теории. Весь материал книги изложен в форме задач на доказательство. Вначале рассматриваются геометрия комплексного линейного пространства и спектральная теория линейных операторов в этом пространстве. Затем изучается унитарное пространство, в котором строится спектральная теория самосопряженных и унитарных операторов. Далее вводится понятие нормы, рассматриваются геометрия нормированных пространств и некоторые свойства операторов в этих пространствах. После некоторого отступления в область полилинейной и внешней алгебры вводится вещественное линейное пространство н рассматриваются вопросы, связанные с комплексификацией и Декомплексификацией, а также элементы дифференциального исчисления для отображений. На основе излагаемой далее теории выпуклых множеств изучаются вопросы расположения собственных значений в сингулярных чисел линейных операторов. После этого в вещественном линейном пространстве вводится отношение порядка и в упорядоченном пространстве строится теория линейных неравенств, а также теория линейной и выпуклой оптимизации. Далее, уже в комплексном пространстве, систематически излагается теория расширений операторов, и в заключение рассматриваются некоторые специальные классы операторов.

Характеристики
Артикул
СНВ18092024-99
Автор
Глазман Израиль Маркович, Любич Юрий Ильич
Издательство
Наука

Букинистическое издание. Книга предназначается для активного изучения расширенного курса линейной алгебры и основ функционального анализа. Многие теории и построения, представленные в книге, являются конечномерными моделями соответствующих оригинальных теорий и построений из функционального анализа. При этом, сохраняя свое идейное содержание, они становятся существенно более доступными. В целом книгу можно рассматривать как изложение линейной алгебры с точки зрения функционального анализа. Но вместе с тем в ней встречаются также некоторые существенно конечномерные теории. Весь материал книги изложен в форме задач на доказательство. Вначале рассматриваются геометрия комплексного линейного пространства и спектральная теория линейных операторов в этом пространстве. Затем изучается унитарное пространство, в котором строится спектральная теория самосопряженных и унитарных операторов. Далее вводится понятие нормы, рассматриваются геометрия нормированных пространств и некоторые свойства операторов в этих пространствах. После некоторого отступления в область полилинейной и внешней алгебры вводится вещественное линейное пространство н рассматриваются вопросы, связанные с комплексификацией и Декомплексификацией, а также элементы дифференциального исчисления для отображений. На основе излагаемой далее теории выпуклых множеств изучаются вопросы расположения собственных значений в сингулярных чисел линейных операторов. После этого в вещественном линейном пространстве вводится отношение порядка и в упорядоченном пространстве строится теория линейных неравенств, а также теория линейной и выпуклой оптимизации. Далее, уже в комплексном пространстве, систематически излагается теория расширений операторов, и в заключение рассматриваются некоторые специальные классы операторов.

Подпишитесь на рассылку

Подпишитесь на наши акции и новости и получите скидку на следующий заказ

Нажимая «Подписаться», вы даете согласие на обработку указанных персональных данных в целях получения информационной и рекламной рассылки